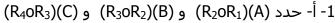
ثانوية وادي الذهب وجدة تمارين خاصة بدرس الدوران

التمرين رقم 1

نعتبر في المستوى الموجه متوازي أضلاع ABCD نعتبر في المستوى الموجه متوازي أضلاع DAO_4 و DO_3 و DO_2 0 مركزه DO_3 0 المثلثات DO_3 1 متساوية الساقين وقائمة على التوالي في DO_3 1 و DO_3 2 متساوية الساقين وقائمة على التوالي في DO_3 1 لتكن DO_3 2 منتبرض أن DO_3 2 أن DO_3 3 مراكزها DO_3 4 الدورانات في المستوى التي مراكزها DO_3 4 و DO_3 5 و DO_3 6 على التوالي وزاوية كل واحد منها DO_3 6 نعتبر في التوالي وزاوية كل واحد منها DO_3 6 ميراكرو



$$f = R_4 \circ R_3 = R_3 \circ R_2$$
 : بين أن $f = R_2 \circ R_1$

$$f(O_1)$$
 ثم حدد $R_3(R_2(O_1)) = R_2(O_1)$ ثم حدد -2

ب- بین ان O₂)=O₄

 $O_1O_2O_3O_4$ ج- ما هي طبيعة الرباعي

3- ليكن (Δ)واسط القطعة [AB] و S_{Δ} التماثل المحوري المتعامد ذو المحور (Δ) . نضع

 $g=R_2o S_{\Delta}$

 $g(O_1)$ و g(A)

ب- بين أن g ليس تماثلا متعامدا

التمرين رقم 2:

نعتبر ABC مثلث بحیث $(\overrightarrow{AB}; \overrightarrow{AC}) \equiv \alpha[2\pi]$ مع $0 < \alpha < \frac{\pi}{2}$ ننشئ خارج هذا المثلث المربعات:

AHIB و ACFG ومتوازيي الأضلاع ACFG

يكن O مركز المربع BDEC و (Δ) ليكن CEKF و BIJD إ

المستقيم المار من O و الموازي للمستقيم (BC). $S_{(BC)}oS_{(BE)}$ و $S_{\Delta}oS_{(BC)}$ و $S_{\Delta}oS_{(BC)}$

S(BC) وحدد عناصرهما المميزة.

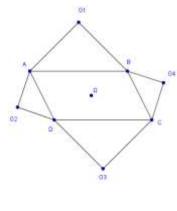
2- لتكن t الإزاحة ذات المتجهة \vec{B} و r الدوران الذي مركزه B وزاويته $\frac{\pi}{2}$

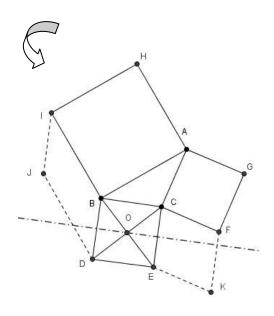
أ- فكك كل من الإزاحة t والدوران r إلى تركيب تماثلين متعامدين.

ب- استنتج أن tor دوران مركزه O وزاويته $\frac{\pi}{2}$.

ج- حدد (A) tor واستنتج طبيعة المثلث AOJ

Oمتساوي الساقين وقائم الزاوية في O متساوي الساقين وقائم الزاوية. O متساوي الساقين وقائم الزاوية.





التمرين رقم 3

نعتبر ABCD مربع بحیث
$$[2] \equiv \frac{\pi}{2} = (\overline{AB}; \overline{AD})$$
 والنقطة O مرکزه. \overline{I} و $\overline{DI} = 2\overline{AI}$ و $\overline{DI} = 2\overline{AI}$

أ- بين أن
$$R(M)=N$$
 واستنتج طبيعة المثلث OMN

$$g=R_{\left(0,rac{\pi}{2}
ight)}oS_{(AC)}$$
 و $f=S_{(AC)}oS_{(BD)}$: عتبر التطبيقين -3

التمرين رقم 4

ABC مثلث ، ننشئ خارجه المثلثات BEC و CFA و AGB المتساوية الأضلاع.نعتبر النقط I و J و K مراكز ثقل المثلثات CFA و CFA و AGB عل التوالي

t. أ- بين أن التطبيق
$$r_{\left(K, \frac{-2\pi}{3}\right)} or_{\left(J, \frac{-2\pi}{3}\right)} or_{\left(J, \frac{-2\pi}{3}\right)} or$$
ازاحة 1

$$r_{\left(J,\frac{-2\pi}{3}\right)}or_{\left(I,\frac{-2\pi}{3}\right)}=r_{\left(K,\frac{2\pi}{3}\right)}$$
 : خ- استنتج أن

أ أعط قياسا للزاوية الموجهة
$$\left(\overrightarrow{BF},\overrightarrow{CG}
ight)$$
 ثم استنتج أن النقط O ; B ;C و $\left(\overrightarrow{BF},\overrightarrow{CG}
ight)$

$$(\overrightarrow{OA},\overrightarrow{OC})$$
 و للزاوية الموجهة $(\overrightarrow{OE},\overrightarrow{EC})$ و للزاوية الموجهة ب- أعط قياسا

$$O \in (AE)$$
 ج- استنتج أن

$$ig(IIig)$$
 التماثل المحوري الذي محوره -4

أ- حدد التماثلين المحوريين
$$S_1$$
 و S_2 بحيث:

$$r_{\left(I,rac{-2\pi}{3}
ight)}=SoS_1$$
 g $r_{\left(J,rac{-2\pi}{3}
ight)}=S_2oS$ g $r_{\left(I,rac{-2\pi}{3}
ight)}=S_2oS_1$

$$\left(\overline{\overrightarrow{IK};\overrightarrow{IJ}}\right) \equiv \frac{-\pi}{3} \left[\pi\right]$$
 و $\left(\overline{\overrightarrow{JI};\overrightarrow{JK}}\right) \equiv \frac{-\pi}{3} \left[\pi\right]$ ب-بین أن

